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Abstract

In the Supplementary Materials, we provide some details of the calculations mentioned in the

main text.
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I. THE HAMILTONIAN AND THE MEAN-FIELD SOLUTIONS OF THE KANE-

MELE T-J MODEL ON A ZIGZAG RIBBON

Here, we provide in details the Hamiltonian of the Kane-Mele t-J model on zigzag ribbon

and the numerical solutions via RMFT. The Hamiltonian matrix is 4N × 4N in size with

N/2 being the number of zigzag chains along x-axis. Each zigzag chain passes through either

A sites or B sites. The ket state of the Hamiltonian is

|Ψ〉 = (c+
1↑c

+
2↑ · · · c

+
N↑c

+
1↓c

+
2↓ · · · c

+
N↓c1↑c2↑ · · · cN↑c1↓c2↓ · · · cN↓)T (I.1)

The Hamiltonian comprises three terms

H = H0 +Hso +H∆. (I.2)

Here, H0 represents the nearest-neighbor hopping terms in the matrix form of

(· · · c+
iσ · · · )H(· · · cjσ · · · )T , given by:

for i = 1, 3, 5 · · ·N − 1,

H0,σσ(i, i+ 1) = −2tcos(
k

2
),

H0,σσ(i+ 1, i) = H0,σσ(i, i+ 1)

(I.3)

for i = 2, 4, 6 · · ·N,

H0,σσ(i, i+ 1) = −t,

H0,σσ(i+ 1, i) = H0,σσ(i, i+ 1),

where σ =↑, ↓ (+ or −), and k = kx. The matrix elements of the form

(· · · ciσ · · · )H(· · · c+
jσ · · · )T is related to (· · · c+

iσ · · · )H(· · · cjσ · · · )T by a minus sign. The Hso

describes the intrinsic spin-orbit couping with the following matrix form:
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for i = 3, 5, 7 · · ·N − 3

Hso,σσ(i, i− 2) = σ
2

3
tsosin(

k

2
),

Hso,σσ(i− 2, i) = Hso,σσ(i, i− 2),

Hso,σσ(i, i+ 2) = σ
2

3
tsosin(

k

2
),

Hso,σσ(i+ 2, i) = Hso,σσ(i, i− 2),

Hso,σσ(i, i) = −σ2

3
tsosin(k);

for i = 4, 6, 8 · · ·N − 2

Hso,σσ(i, i− 2) = −σ2

3
tsosin(

k

2
),

Hso,σσ(i− 2, i) = Hso,σσ(i, i− 2),

Hso,σσ(i, i+ 2) = −σ2

3
tsosin(

k

2
),

Hso,σσ(i+ 2, i) = Hso,σσ(i, i− 2),

Hso,σσ(i, i) = σ
2

3
tsosin(k);

and the other matrix elements read

Hso,σσ(1, 1) = −σ2

3
tsosin(k),

Hso,σσ(2, 2) = σ
2

3
tsosin(k),

Hso,σσ(N − 1, N − 1) = −σ2

3
tsosin(k),

Hso,σσ(N,N) = σ
2

3
tsosin(k),

(I.4)

where the matrix elements with the abnormal order is minus the normal order ele-

ments. The H∆ is the superconducting pairing gap with the matrix elements of the form

3



(· · · ci,σ · · · )H(· · · cj,−σ)T or (· · · c+
i,σ · · · )H(· · · c+

j,−σ)T , given by:

for i = 1, 3, 5 · · ·N − 1

H∆(i, i− 1 + 3N) = ∆0

H∆(i− 1, i+ 3N) = ∆0

H∆(i, i+ 1 + 3N) = ∆1 + ∆2

H∆(i+ 1, i+ 3N) = ∆1 + ∆2

similarly

H∆(i+N, i− 1 + 2N) = −∆0

H∆(i− 1 +N, i+ 2N) = −∆0

H∆(i+N, i+ 1 + 2N) = −∆1 −∆2

H∆(i+ 1 +N, i+ 2N) = −∆1 −∆2

H∆(i+ 2N, i− 1 +N) = H∆(i+N, i− 1 + 2N)∗

H∆(i− 1 + 2N, i+N) = H∆(i− 1 +N, i+ 2N)∗

H∆(i+ 2N, i+ 1 +N) = H∆(i+N, i+ 1 + 2N)∗

H∆(i+ 1 + 2N, i+N) = H∆(i+ 1 +N, i+ 2N)∗

H∆(i+ 3N, i− 1) = H∆(i, i− 1 + 3N)∗

H∆(i− 1 + 3N, i) = H∆(i− 1, i+ 3N)∗

H∆(i+ 3N, i+ 1) = H∆(i, i+ 1 + 3N)∗

H∆(i+ 1 + 3N, i) = H∆(i+ 1, i+ 3N)∗,

and the other matrix elements read

H∆(1, 2 + 3N) = ∆1 + ∆2

H∆(2, 1 + 3N) = H∆(1, 2 + 3N)

H∆(1 +N, 2 + 2N) = −H∆(1, 2 + 3N)

H∆(2 +N, 1 + 2N) = −H∆(2, 1 + 3N)

H∆(1 + 2N, 2 +N) = H∆(1 +N, 2 + 2N)∗

H∆(2 + 2N, 1 +N) = H∆(2 +N, 1 + 2N)∗

H∆(1 + 3N, 2) = H∆(1, 2 + 3N)∗

H∆(2 + 3N, 1) = H∆(2, 1 + 3N)∗

(I.5)4



where ∆0 is the pairing order 〈ci,σcj,−σ〉, ∆0, ∆1 and ∆2 correspond to the pairing order

parameters carrying different phases 0,2π
3

and 4π
3

in d + id′-wave superconducting states,

respectively.

The mean-field variables are solved self- consistently by minimizing the free energy both

for a periodic lattice and a finite-sized ribbon. On a 2D periodic lattice, the results as a

function of doping are shown in Fig. 1 (a) and (b). The d + id′-wave pairing has the

lower free energy compared to that for the extended s−wave pairing for the dopings of our

interest: 0 < δ < 0.3.

II. ADDITIONAL RESULTS OF THE KANE-MELE T-J MODEL ON A ZIGZAG

RIBBON

Here, we provide additional results based on our numerical calculations on the doped

Kane-Mele t− J model via RMFT.

A. Superconducting states at the edges

In the Bogoliubov quasi-particle spectrum on the zigzag ribbon (see Fig. 2 in the main

text), we find two linear-dispersed spectrum crossed at kx ∼ π with the energy E = ±E0

(E0 > 0). They are closely related to the edge states of the pure Kane-Mele model. The

negative energy state (E < 0) corresponds to the superconducting state at the edges as

it supports finite values in superconducting order parameter ∆0 at the edges and their

corresponding eigen-vectors are distributed mainly at the edges (see Fig. 2 (b)).

To investigate further the position dependence of the superconducting gap ∆d+id′ , we

generalize our mean-field calculations to allow for spatially varying superconducting gap

∆(i) (instead of the gap with an uniform magnitude). As shown in Fig. 2 (a), the magnitude

of gap is enhanced at edges and stay at a constant value in the bulk. This can be understood

as the electronic density of states (DOS) of the un-doped pure KM ribbon is enhanced at the

edges due to the presence of the helical edge states. As a result, the superconducting pairing

strength is enhanced at edges. However, the inhomogeneity of superconducting gap at the

edges concerns only with the bulk states at a sizable negative energy. Since we focus in this

work on the Majorana fermions near zero energy, far away from the superconducting states at
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edges, we therefore ignore this spatial inhomogeneity and consider only the superconducting

gap with an uniform magnitude within our RMFT approach.

B. Doping evolution of the Bogoliubov excitation spectrum

Here, we provide the doping evolution of the Bogoliubov excitation spectrum as shown

in Fig. 3. The spin-Chern phase with helical Majorana modes survive at low dopings. For

J/t = 0.1, tSO/t = 0.5, it survives for 0 < δ < 0.2. Above δ = 0.2, the superconducting gap

vanishes and the system is in the normal state. On the other hand, the chiral phase will

prevail in the opposite regime tSO � ∆0 for low dopings. However, the chiral superconduc-

tivity has been addressed extensively (see Refs. 28, 36 in the main text). We will leave this

issue out of the focus of our present work.

III. TOPOLOGICAL INVARIANT

In this section, we provide details on obtaining the Z2 topological number (or the pseudo-

spin Chern number) in the doped Kane-Mele t-J model following the approach in Ref. 2.

First, the TKNN number, a topological (Chern) number, for the n−th band is defined as

[1]:

Cn =
1

2πi

∫
BZ

dk2 ∇k ×A(k), (III.1)

where A(k) ≡ 〈n(k)|∇k|n(k)〉, |n(k)〉 is the Bloch state in the n–th band up to a normaliza-

tion coefficient, which satisfies the Schroedinger equation H(k)|n(k)〉 = En(k)|n(k)〉. The

existence of A(k) implies that there is a non-trivial magnetic field across the first Brillouin

Zone (FBZ). The FBZ of the honeycomb lattice we choose for the integration Eq. (III.1) is

illustrated in Fig. 4, the parallelogram (area enclosed by red lines) spanned by vectors q1

and q2 in momentum space.

In order to numerically calculate the TKNN number covered by the entire FBZ (area

enclosed by the solid red lines) in Fig. 4, we first discretize it into N −1×N −1 small flakes

of parallelograms such as the smaller parallelogram abcd (enclosed by solid black lines) in Fig.

4. The position of a discretized lattice point (that is the vertices of the small parallelograms
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) can be specified by a vector ki,j = ( ki1 , kj2) , for (i, j) ∈ [1 , N ] with its components

ki1 =
1

N − 1
[(i− 1)× q1x + (j − 1)× q2x] ; (III.2)

kj2 =
1

N − 1
[(i− 1)× q1y + (j − 1)× q2y] , (III.3)

where qix and qiy are the components of the vectors q1 and q2 with unit lattice spacing

|ā| = 1 , they are given by

q1 = (q1x , q1y) =

(
4π

3
, 0

)
; (III.4)

q2 = (q2x , q2y) =

(
2π

3
,

2
√

3π

3

)
. (III.5)

The phase difference ∆θ1(kij) of Ψn (k) ≡ 〈k|n(k)〉 travelling from a lattice point ki,j to

ki+1,j can be computed to be

∆θ1(kij) =− i ln

[
Ψ†n (ki,j) Ψn (ki+1,j)

|Ψ†n (ki,j) Ψn (ki+1,j) |

]
. (III.6)

≡− i lnU1 (kij) ,

where

U1 (ki,j) ≡
Ψ†n (ki,j) Ψn (ki+1,j)

|Ψ†n (ki,j) Ψn (ki+1,j) |
(III.7)

The subscript ”1” of ∆θ1 and U1 (kij) represents that Ψn travels along the direction of q1.

Sum over ∆θ of the four sides of the small parallelogram abcd in Fig. 4 can one obtain the

total phase shift of the Bloch wavefunction on the n–th band after circling around that small

parallelogram. Compare with Eq. (III.1), we define the lattice U(1) gauge field strength F n
ij

by

F n
ij ≡ lnU1 (ki,j)U2 (ki+1,j)U

−1
1 (ki,j+1)U−1

2 (ki,j) (III.8)

Finally, we can calculate the TKNN number on the lattice associated the n-th band by

Cn =
1

2πi

∑
i,j

F n
ij. (III.9)
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For the same band we can further define a topological number, so-called the pseudo-spin

Chern number, as:

NW =
Cn − Cn̄

2
, (III.10)

where Cn̄ is the TKNN number of the other degenerate eigenvector of the same band.

Numerically, we obtain Cn̄ = −Cn, thus NW is either 1 or −1. We checked numerically

that for the parameters used in Fig. 3 of the main text |NW | approaches to 1. The total

|NW | = 2 once the two pairs of occupied degenerate bands are included.

In the other extreme limit, ∆ � tSO, we found that NTKNN ≡ Cn + Cn̄ = ±2, and

NW = 0, as expected for d + id′ superconductivity in doped graphene [3]. Further studies

suggest the existence of a quantum phase transition at a critical ratio of ∆/tSO separating

the spin-Chern phase with NW = ±1 from the chiral (TKNN) phase with NTKNN = ±2

(see Ref. 3).

IV. EFFECTIVE TRS SUPERCONDUCTIVITY NEAR THE DIRAC POINTS

In this section, we derive the low-energy effective TRS superconducting pairing of our

model near Dirac points. We re-express the d + id′ superconducting order parameter in

terms of the electron operators ψ±,k which diagonalizes the tight-binding KM Hamiltonian

with the corresponding eigenvalue E± = ±(
√
ε2k + γ2

k − µ) (see Ref. 5): c↑A,k

c↑B,k

 =

−α−k −α+
k

β−k β+
k

 ψ↑+,k

ψ↑−,k

 (IV.1)

and  c↓A,k

c↓B,k

 =

α+
k α−k

β+
k β−k

 ψ↓+,k

ψ↓−,k

 (IV.2)
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where α±k = β± × εk(γk±
√
ε2k+γ2k)

|εk|2
, β± = |εk|√

|εk|2+(γk±
√
ε2k+γ2k)2

, and (α±k )∗ = −α∓−k, β± = |α∓k |.

The d+ id′ superconducting pairing term can be re-written as:

H∆ =
∑
k

∆d+id′

k (c†↑A,kc
†↓
B,k − c

†↓
A,kc

†↑
B,k) + h.c.

=
∑
k

[∆−−k ψ†↑−,kψ
†↓
−,−k + ∆++

k ψ†↑+,kψ
†↓
+,−k

+ ∆+−
k ψ†↑+,kψ

†↓
−,−k + ∆−+

k ψ†↑−,−kψ
†↓
+,k] + h.c.,

∆
++(−−)
k = |α+(−)

k ||α−(+)
k |

× [∆d+id′

k eiθ(α
+(−)
k ) + ∆d+id′

−k e−iθ(α
+(−)
k )],

∆
+−(−+)
k = ±|α+(−)

k |2eiθ(α
+(−)
k )[∆d+id′

k −∆d+id′

−k ],

(IV.3)

where α±k = |α±k |eiθ(α
±
k ) with θ(α±k ) being th ephase of α±k . In the presence of a finite SO

coupling and hole-doping, the intra-band pairing of the lower band ψ†↑−,kψ
†↓
−,−k with pairing

gap function ∆−−k dominates. The gap function ∆−−q± near Dirac points K± = ( 2π
3
√

3
,±2π

3
)

with q± = K±+ (±qx, qy) behaves to leading order in |q| as an effective spin-singlet px± ipy-

like superconductivity:

∆−−q± ∼ −a0∆0i(qx ∓ iqy) (IV.4)

with a0 = 3teiπ/3

12
√

3tSO
. Hence, our system behaves as an effective TRITOPs. In deriving

Eq. (IV.4), we have used the following results:

εq± ≈ ±
3t

2
(qy + iqx),

α−q− ≈ −
εq−

2
√

3tSO
,

α+
q− ≈ εq−/|εq−|. (IV.5)

We have also used the approximated forms of d+ id′ pairing gap ∆d+id′(q)± near the Dirac

points, shown to be effectively a mixture of s−wave like (near K+) and px + ipy−wave like

(near K−) superconducting pairing [4]:

∆d+id′(q+) ≈ 3∆0e
i4π/3,

∆d+id′(q−) ≈ 3

2
∆0e

iπ/3(qy − iqx). (IV.6)
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FIG. 1: (Color online) (a). Mean-field free energy FMF versus doping δ of doped Kane-Mele model

on 2D periodic lattice for extended s-wave and d+ id′-wave superconducting pairing symmetries.

(a). Mean-field variables ∆0 (strength of pairing gap) and χ-field versus doping for (b). The

parameters used are: J/t = 0.1, tSO/t = 0.8.
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FIG. 2: (Color online) (a) Superconducting gap ∆d+id′ as a function of position in the zigzag

ribbon for N = 26 (or N/2 = 13 zigzag chains). (b) Square magnitude of wave functions |Ψ(i)|2

at the edge in the superconducting states with an energy E/t = −0.613 as a function of position

i = 1 · · ·N in the zigzag ribbon with N = 56. Here, we take the uniform mean-field solution

for ∆d+id′(i) = 0.22 for N = 56. The parameters used in (a) and (b) are: J/t = 0.1, δ = 0.15,

tSO/t = 0.5.
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FIG. 3: Bogoliubov excitation spectrum of the Kane-Mele t-J model for different dopings. The

parameters used here are: J/t = 0.1, tSO/t = 0.5.
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FIG. 4: The parallelogram enclosed by red solid lines is the area of entire FBZ with Γ = (kx =

0, ky = 0). The small flake of parallelogram abcd is the smallest unit after discretizing the FBZ for

numerical calculation.
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